2024年1月6日发(作者:)

元器件交易网C-61208-20 GHz Output x2

Active Frequency MultiplierData Sheet

DescriptionAvago Technologies' AMMC-6120 is an easy-to-use x2 active frequency multiplier MMIC designed for com-mercial communication systems. Though capable of doubling to 24 GHz with reduced fundamental suppres-sion, the MMIC is designed to take a 4 to 10 GHz input and double it to 8 to 20 GHz. It has integrated output amplifier, matching harmonic suppression, and bias networks. The input/output are matched to 50 Ω and fully DC blocked. The MMIC is fabricated using PHEMT technology. The backside of this die is both RF and DC ground. This helps simplify the assembly process and reduces assembly related performance variations and costs. For improved reliability and moisture protec-tion, the die is passivated at the active areas. This MMIC is a cost effective alternative to bulky hybrid FET and diode doublers that require high input drive power, have high C.L. and poor fundamental -6120 Absolute Maximum Ratings[1]Symbol Parameters/Conditions Units Min.   Positive Drain Voltage V  7Vg Gate Supply Voltage V -3.0 0.5Id Drain Current mA  120Pin CW Input Power dBm  15Tch Operating Channel Temp. °C  +150Tstg Storage Case Temp. °C -65 +150Tmax Maximum Assembly Temp. °C  +300  (60 sec. max.)Note:1. Operation in excess of any one of these conditions may result in permanent damage to this  Size: 1600 x 1000 µm (64 x 40 mils)Chip Size Tolerance: ± 10 µm (± 0.4 mils)Chip Thickness: 100 ± 10 µm (4 ± 0.4 mils)Pad Dimensions: 120 x 80 µm (5x3 ± 0.4 mils)Features• Input frequency range: 4-10 GHz• Broad input power range: -11 to +5 dBm• Output power: +14 dBm (Pin = +3 dBm)• Fundamental Suppression of 25 dBc• 50 Ω input and output match• Supply bias of -1.4 V, 5 V and 85 mAApplications• Microwave radio systems• Satellite VSAT, DBS Up/Down Link• LMDS & Pt-Pt mmW Long Haul • Broadband Wireless Access (including 802.16 and 802.20 WiMax)  • WLL and MMDS loopsAttention: Observe precautions for

handling electrostatic sensitive devices. ESD Machine Model (Class A) ESD Human Body Model (Class 0)Refer to Avago Application Note A004R:

Electrostatic Discharge Damage and Control.

元器件交易网C-6120 DC Specifications/Physical Properties[1]Symbol Parameters and Test Conditions

Idq   Vg qch-b  Drain Supply Current (under any  RF power drive and temperature) (Vdd = 5 V) Gate Supply Operating Voltage  Thermal Resistance[2]  (Backside Temperature, Tb = 25°C) Units

mA  V  °C/W Min.

80  -1.5   Typ.

85  -1.4  25 Max.105  -1.0   Notes:1. Ambient operational temperature TA = 25°C unless otherwise noted.2. Channel-to-backside Thermal Resistance (qch-b) = 26°C/W at Tchannel (Tc) = 34°C as measured using infrared microscopy. Thermal Resistance at backside temperature (Tb) = 25°C calculated from measured -6120 RF Specifications

[3,4,5]TA = 25°C, Vdd = 5 V, Vg=-1.4V, Id(Q) = 85 mA, Zo = 50 ΩSymbol Parameters and Test Conditions Units

Fin Fout Po Fo  3Fo  P-1dB RLin RLout SSB  Input Frequency Output Frequency Output Power[4] Fundamental  Isolation     (referenced to Po) 3rd Harmonic  Isolation (referenced to Po) Input Power at 1dB Gain Compression Input Return Loss[6] Output Return Loss[6] Single Sideband Phase Noise (100 KHz offset) GHz GHz dBm dBc  dBc dBm dB dB DBc/Hz Minimum

  10.5 18       Typical

4 to 10 8 to 20 14 25  25 +1 -15 -9 -135 Maximum

         Sigma  0.6 1.8  2.5   Notes:3. Small/Large -signal data measured in wafer form TA = 25°C.4. 100% on-wafer RF test is done at Pin = +3 dBm, output frequency = 10, 16, and 20 GHz.5. Specifications are derived from measurements in a 50-W test environment. Aspects of the multiplier performance may be improved over a more narrow bandwidth by application of additional matching.2

元器件交易网C-6120 Typical Performances (TA = 25°C, Vdd = 5 V, Idq = 85 mA, Vg = -1.4 V, Zin = Zout = 50 W unless otherwise stated)Note: These measurements are in 50 W test environment. Aspects of the amplifier performance may be improved over a narrower bandwidth by  application of additional conjugate, linearity or low noise (Gopt) matching.2015102H51H)m3HBd04H(

rew-5oP-10

tup-15tuO-20-25-320222426Output Frequency (GHz)Figure 1. Output Power vs. Output Freq. @ Pin=+3dBm1918)m17Bd(16

]H215[

re14woP13

tup12Pin=-2dBmtPin= 0dBmuO11Pin=+2dBmPin=+4dBm120222426Output Frequency (GHz)Figure 3. Output Power [2H] vs. Output Freq. at variable Pin0)Bd-5(

ssoL-10

nrute-15R

P/O-20

&

P/-25S11IS22-31820222426Frequncy (GHz)Figure 5. Input and Output Return Loss3201510-40˚C [2H])m5+25˚C [2H]+85˚C [2H]Bd(0-40˚C [1H]

rew-5+25˚C [1H]+85˚C [1H]oP-10

tup-15tuO-20-25-320222426Output Frequency (GHz)Figure 2. Output Power vs. Output Freq. over temp @ Pin=+3dBm1015)cBd(20

]H1[

n25oisser30ppPin=-2dBmuS35Pin= 0dBmPin=+2dBmPin=+4dBm420222426Output Frequency [GHz]Figure 4. Fundamental Suppression at variable Pin160150Vg=-1.2V, Vd=4.5V)Vg=-1.2V, Vd=5.0VAm(140Vg=-1.4V, Vd=4.5V

Vg=-1.4V, Vd=5.0V]dI[

130tnerr120uC

n110iarD

100latoT9080-11-9-7-5-3-11357911Input Power [1H] (dBm)Figure 6. Variation of total drain current with input power

元器件交易网201816Fout=8GHz

)m14Bd(12

]H210[

rew8oP6

tupt4Vg=-1.2V, Vd=4.5VVg=-1.2V, Vd=5.0VuO2Vg=-1.4V, Vd=4.5VVg=-1.4V, Vd=5.0V0-11-9-7-5-3-11357911Input Power [1H] (dBm)Figure 7. 2H Output Power Vs Input Power @ Fout=8GHz2018Fout=10GHz

16)m14Bd(

12]H2[10

rew8oP

6tput4Vg=-1.2V, Vd=4.5VVg=-1.2V, Vd=5.0VOu2Vg=-1.4V, Vd=4.5VVg=-1.4V, Vd=5.0V0-11-9-7-5-3-11357911Input Power [1H] (dBm)Figure 9. 2H Output Power Vs Input Power @ Fout=10GHz2018)16mFout=14GHz

B14d(

]H122[

10rew8oP

t6uptu4Vg=-1.2V, Vd=4.5VVg=-1.2V, Vd=5.0VO2Vg=-1.4V, Vd=4.5V0Vg=-1.4V, Vd=5.0V-11-9-7-5Input Power [1H] (dBm)-3-11357911Figure 11. 2H Output Power Vs Input Power @ Fout=14GHz420Vg=-1.2V, Vd=4.5V25Vg=-1.2V, Vd=5.0V)Vg=-1.4V, Vd=4.5VcBVg=-1.4V, Vd=5.0Vd(

]H301[

noiss35erppuS40Fout=8GHz

45-11-9-7-5-3-11357911Input Power [1H] (dBm)Figure 8. Fundamental Supp. Vs Input Power @ Fout=8GHz20Vg=-1.2V, Vd=4.5V)25Vg=-1.2V, Vd=5.0VVg=-1.4V, Vd=4.5VcBVg=-1.4V, Vd=5.0Vd(

]H130[

noisse35rppuFout=10GHzS4045-11-9-7-5-3-11357911Input Power [1H] (dBm)Figure 10. Fundamental Supp. Vs Input Power @ Fout=10GHz10Vg=-1.2V, Vd=4.5V)15Vg=-1.2V, Vd=5.0VcVg=-1.4V, Vd=4.5VBdVg=-1.4V, Vd=5.0V(

]H201[

nois25serppu30SFout=14GHz

35-11-9-7-5-3-11357911Input Power [1H] (dBm)Figure 12. Fundamental Supp. Vs Input Power @ Fout=14GHz

元器件交易网201816)mB14d(

]12H2Fout=16GHz

[

10rew8oP

t6upt4Vg=-1.2V, Vd=4.5VVg=-1.2V, Vd=5.0VOu2Vg=-1.4V, Vd=4.5VVg=-1.4V, Vd=5.0V0-11-9-7-5-3-11357911Input Power [1H] (dBm)Figure 13. 2H Output Power Vs Input Power @ Fout=16GHz2018)16mBd14(

]H122[

r10ew8Fout=20GHzoP

t6uptu4Vg=-1.2V, Vd=4.5VOVg=-1.2V, Vd=5.0V2Vg=-1.4V, Vd=4.5VVg=-1.4V, Vd=5.0V0-11-9-7-5-3-11357911Input Power [1H] (dBm)Figure 15. 2H Output Power Vs Input Power @ Fout=20GHz2018)m16Bd14(

]H122[

r10ew8Fout=22GHz

oP

t6Vg=-1.2V, Vd=4.5Vuptu4Vg=-1.2V, Vd=5.0VO2Vg=-1.4V, Vd=4.5VVg=-1.4V, Vd=5.0V0-11-9-7-5-3-11357911Input Power [1H] (dBm)Figure 17. 2H Output Power Vs Input Power @ Fout=22GHz51015Fout=16GH)cBd(

]H120[

noisse25rppuVg=-1.2V, Vd=4.5VS30Vg=-1.2V, Vd=5.0VVg=-1.4V, Vd=4.5VVg=-1.4V, Vd=5.0V35-11-9-7-5-3-11357911Input Power [1H] (dBm)Figure 14. Fundamental Supp. Vs Input Power @ Fout=16GHz5Fout=20GHz10)cBd(

15]H1[

no20isserp25puVg=-1.2V, Vd=4.5VS30Vg=-1.2V, Vd=5.0VVg=-1.4V, Vd=4.5VVg=-1.4V, Vd=5.0V35-11-9-7-5-3-11357911Input Power [1H] (dBm)Figure 16. Fundamental Supp. Vs Input Power @ Fout=20GHz510Vg=-1.2V, Vd=4.5VVg=-1.2V, Vd=5.0V)Vg=-1.4V, Vd=4.5VcB15Vg=-1.4V, Vd=5.0Vd(

]H120[

noiss25erppFout=22GHzuS3035-11-9-7-5-3-11357911Input Power [1H] (dBm)Figure 18. Fundamental Supp. Vs Input Power @ Fout=22GHz

元器件交易网2018Fout=26GHz)m16Vd=4.5V, Vg=-1.2VBd(14

]H212[

re10woP8

tu6Vg=-1.2V, Vd=4.5VptVg=-1.2V, Vd=5.0VuO42Vg=-1.4V, Vd=4.5VVg=-1.4V, Vd=5.0V0-11-9-7-5-3-11357911Input Power [1H] (dBm)Figure. 19 2H Output Power Vs Input Power @ Fout=26GHz-50-60)-70zH/-80Fout=15.6GHzcB-90d(

e-100sio-110N

e-120sah-130P

B-140SS-150-160-1701.E+021.E+031.E+041.E+051.E+061.E+07Offset Frequency [Hz]Figure.21 SSB Phase Noise of frequency doubler

(Pin=+2dBm, fout=15.6GHz)Biasing and OperationThe frequency doubler MMIC consists of a differen-tial amplifier circuit that acts as an active balun. The outputs of this balun feed the gates of balanced FETs and the drains are connected to form the single-ended output. This results in the fundamental frequency and odd harmonics canceling and the even harmonic drain currents (in phase) adding in superposition. Node ‘S’ acts as a virtual ground.  An input matching network (M/N) is designed to provide good match at fundamental fre-quencies and produces high impedance mismatch at higher harmonics. AMMC-6120 is biased with a single positive drain supply and single negative gate supply using separate bypass capacitors. It is normally biased with the drain supply connected to both the VdAB and the Vdd bond pads and the gate supply connected to the VgD bond pad. It is important to bypass both VdAB and Vdd with 100 pF capacitors placed as close to the die as possible. Typical bias connections are shown in Figure 22. For most of the application it is recommended to use a Vg = –1.2 V and Vd = 4.5 V. 65Fout=26GHz)10cBd-(

15]H1[

n20oisser25Vg=-1.2V, Vd=4.5VpVg=-1.2V, Vd=5.0VpSu30Vg=-1.4V, Vd=4.5VVg=-1.4V, Vd=5.0V35-11-9-7-5-3-11357911Input Power [1H] (dBm)Figure. 20 Fundamental Supp. Vs Input Power @ Fout=26GHzM/NM/N@ foS@ 2foA. DIFF. AMPACTIVE BALUNFigure 22.

The AMMC-6120 performance changes very slightly with Drain (Vd) and Gate bias (Vg) as shown in Figure 8 and 9. Minor improve-ments in performance are possible for output power or fundamental suppression by optimizing the Vg from –1.0 V to –1.4 V and/or Vd from 4.0 to 5.0 V. The RF input and output port are AC coupled thus no DC voltage is present at either ports. However, the  RF output port has a internal output-matching circuit that presents a DC short. Proper care should be taken while biasing sequential circuit to AMMC-6120 as it might cause DC short (use a DC block if sub sequential circuit is not AC coupled). No ground wires are needed since ground connections are made with plated through-holes to the backside of the  the Absolute Maximum Ratings table for allowed DC and thermal conditions. 

元器件交易网embly TechniquesThe backside of the MMIC chip is RF ground. For mi-crostrip applications the chip should be attached directly to the ground plane (e.g. circuit carrier or heatsink) using electrically conductive epoxy [1,2].For best performance, the topside of the MMIC should be brought up to the same height as the circuit surrounding it. This can be accomplished by mounting a gold plate metal shim (same length and width as the MMIC) under the chip which is of correct thickness to make the chip and adjacent circuit the same height. The amount of epoxy used for the chip and/or shim attachment should be just enough to provide a thin fillet around the bottom perimeter of the chip or shim. The ground plan should be free of any residue that may jeopardize electrical or mechanical attachment. The location of the RF bond pads is shown in Figure 24. Note that all the RF input and output ports are in a Ground-Signal-Ground  connections should be kept as short as reasonable to minimize performance degradation due to undesirable series inductance. A single bond wire is normally suf-ficient for signal connections, however double bonding with 0.7 mil gold wire or use of gold mesh is recom-mended for best performance, especially near the high end of the frequency sonic wedge bonding is the  preferred method for wire attachment to the bond pads. Gold mesh can be attached using a 2 mil round tracking tool and a tool force of approximately 22 grams and a ultrasonic power of roughly 55 dB for a duration of 76 ± 8 mS. The guided wedge at an ultrasonic power level of 64 dB can be used for 0.7 mil wire. The recommended wire bond stage tem-perature is 150 ± 2°n should be taken to not exceed the Absolute Maximum Rating for assembly temperature and  chip is 100 µm thick and should be handled with care. This MMIC has exposed air bridges on the top surface and should be handled by the edges or with a custom collet (do not pick up the die with a vacuum on die center).This MMIC is also static sensitive and ESD precautions should be :1. Ablebond 84-1 LM1 silver epoxy is recommended.2. Eutectic attach is not recommended and may jeopardize reliability of the device. VdABVgDVddRFinRFoutFigure 23. AMMC-6120 simplified schematic.7

元器件交易网178VdABVgDVdd0660RFin660RFIRFout472001600Figure 24. AMMC-6120 bonding pad /100 pF/100 pFVdABVgDVdd50 OHM LINERFinRFout50 OHM LINEFigure 25. AMMC-6120 assembly ng Information:

AMMC-6120-W10 = 10 devices per trayAMMC-6120-W50 = 50 devices per trayFor product information and a complete list of distributors, please go to our website:

go, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other subject to change. Copyright © 2005-2008 Avago Technologies Limited. All rights reserved. Obsoletes 5989-3944ENAV02-0743EN - June 23, 2008