2024年6月14日发(作者:)

(19)中华人民共和国国家知识产权局

(12)发明专利说明书

(21)申请号 CN2.2

(22)申请日 2004.01.20

(71)申请人 加拿大圣-高拜恩技术纺织品有限公司;斯坦恩·蒂德公司

地址 加拿大安大略

(72)发明人 约翰·F·波特

(74)专利代理机构 北京同立钧成知识产权代理有限公司

代理人 臧建明

(51)

D03D15/00

D03D25/00

B32B17/02

B32B27/02

B32B27/04

B32B3/10

B32B3/30

(10)申请公布号 CN 1754015 A

(43)申请公布日 2006.03.29

权利要求说明书 说明书 幅图

(54)发明名称

用于建筑板材的具有可控孔隙率的

面层材料

(57)摘要

一种水泥板(100)和制造该水泥板

(100)的方法,该水泥板(100)有一面层

(105),其面重量约为300g/M

法律状态

法律状态公告日

法律状态信息

法律状态

权 利 要 求 说 明 书

1、一种建筑用水泥板,包括:一处于面层间的水泥基材料层;至少一所

述面层的第一面层,其含有用树脂性粘合剂粘合在一起的玻璃纤维;当该树脂性粘

合剂湿润时,其对所述的水泥基材料具有亲水性亲和力,或粘合性亲和力,或二者

的组合;所述第一面层对所述水泥基材料的前体泥浆是不通透的,并且所述第一面

层对从所述泥浆中排出水汽是气体通透和水汽通透的。

2、根据权利要求1所述的水泥板,其中所述的第一面层包括一稀织布、

针织物、针刺或机织织物或布,一随机走向的无纺毡,或其组合。

3、根据权利要求2所述的水泥板,其中所述的第一面层包括一种树脂浸

渍剂或涂料,该树脂浸渍剂或涂料有助于填充孔隙、增加对固化的水泥基材料的粘

附力、增加或减少所述水泥基材料泥浆前体的润湿角,或其组合。

4、根据权利要求1所述的水泥板,其中所述的第一面层包括一粘合到一

玻璃稀织布上的密集的轻质无纺或针刺层,该层具有平均直径小于16微米的玻璃

纤维。

5、根据权利要求1所述的水泥板,其进一步包括:

一定向纤维包含层,其对石膏的前体泥浆具有渗透性;

一与所述定向纤维包含层连接的无纺层,该无纺层对所述石膏前体泥浆的渗透性比

该定向纤维包含层小;以及

所述无纺层包括用超过纤维重量约15%的树脂粘合剂粘合的随机走向的纤维,该

树脂粘合剂不阻止对所述石膏的粘附,不会促成板与板之间的粘连。

6、一种建筑用水泥板的制造方法,包括:

(a)形成一水泥基材料和水混合的泥浆,其分量多于用来形成固化所述水泥基材料

所需要的泥浆分量;

(b)将所述泥浆置于一第一面层顶面上,其中所述第一面层是一种多孔材料,该多

孔材料含有主要起防止所述泥浆渗透作用的玻璃纤维,所述第一面层对从所述泥浆

中排出水汽是气体通透的;

(c)将一第二面层置于所述泥浆上;以及

(d)当来自所述泥浆的水汽通过至少所述第一面层时,将所述泥浆固化成一固化核

心面。

7、根据权利要求6所述的方法,其中所述的第一面层包括一随机走向的

玻璃纤维包含毡,该玻璃纤维包含毡的面重量约为30-150g/m2

8、根据权利要求6所述的方法,其中所述的第一面层包括一种粘合剂、

浸渍剂或涂料,其有助于填充孔隙、增加对固化的水泥泥浆的粘附力、增加或减少

所述泥浆的润湿角,或其组合。

9、根据权利要求6所述的方法,其中所述的第一面层具有排列的开孔,

所述开孔小到即使当所述泥浆中不含有大量的粘度控制添加剂时,也足以阻止所述

泥浆的渗透。

10、根据权利要求6所述的方法,其中对所述的第一面层进行铺设,以便

当所述泥浆在70°F有约1000-4000cp的粘度时阻止所述泥浆的渗透。

说 明 书

技术领域

本发明涉及对建筑用水泥板进行的改良,如可用于外绝缘修整系统

(exterior insulation finishing systems,EIFS)、井墙、瓷砖支撑物和防火墙的水泥或

石膏盖板。

背景技术

众所周知,用于建筑工业的水泥板包括无机水固化材料,如波特兰水泥或者石膏。

加水石膏或者水泥一旦固化,其抗拉伸强度很弱,经常需要再附以其他面层材料以

增强其对拉伸和扭曲负载的抵抗力。这就是在水泥板的传统石膏墙板和面层材料玻

璃纤维稀织布上使用纸面层的基础。

最近,石膏盖板用于户外的有或没有绝缘层的外绝缘或修整系统中(有时也称其为

EIF系统)。这些系统被设计为将聚苯乙烯粘附到玻璃面的石膏板上,然后再粘上

砖、石头、一薄层灰泥或侧线。由于这些东西是暴露的,所以这些板通常都要经过

疏水剂的处理或浸渍。简单地在核心中或纸质面层中加入疏水剂,如沥青、蜡或硅

氧烷,然而,这既不能防止纸质面层与核心之间的接触面的剥离,也不能防止纸由

于过长时间吸收水分而丧失大部分的强度。作为外盖板的水泥板还应具备防火功能,

所以不宜使用易燃的面层材料。因此,对于这种板材的基本要求就是将其暴露于风、

雨、雪、火和紫外线中,这些板材暴露面上的核心、接触面和面层材料要保持其强

度不变。

就水泥板被用于建筑物内部来说,用于瓷砖支撑、井墙和防火墙,既需要防潮又要

防火,这就限制了纸质面层的使用。尽管纸可以经过处理,使其具备防潮层和抗渗

透膜,但它们也阻止了水泥泥浆的水汽经面层蒸发。这使得用水汽非渗透膜制造连

续板材很困难,因为必须允许将过多的“便利水”蒸发掉,多加水是用以使泥浆操作

起来容易但其并不用于水合作用。

因此,工匠们经过30多年的实践,开发出由玻璃纤维制造的面层材料,它可以克

服纸面层材料的很多缺点。例如,在加拿大专利993779中披露的石膏板是通过将

石膏浆沉积到一放在移动的传送带上的无机纤维层上而制成的。一有相同纤维的第

二层压在泥浆顶部,然后引导其从两滚筒之间穿过,使泥浆渗入到泥浆表面纤维层

中去。结果表明这种操作只能使泥浆部分地、不规则地渗入到无机纤维层中去,使

制得的板材表面粗糙,其中的纤维和石膏均是暴露的。由于泥浆的渗透,糟糕的结

果是滚筒将被固化石膏污染。如果不补救这种污染,就会使同一生产线生产出来的

板材表面留下缺陷。不幸的是,要补救污染的滚筒就要求关闭整条墙板生产线几小

时或几天,这样会造成严重的产量和停工损失。

其他人也提到在板材连续生产中石膏浆渗透的问题。美国专利3993822和

4504533(也列入参考文献中),是用一种复合玻璃毡层制造板材的,这种复合玻璃

毡包含加有玻璃纤维绒头织物、纸板、金箔、油毡或者纸的玻璃纤维布。在每一个

方法中,不论是绒头织物、油毡或者其它层都是阻止石膏的外渗,并且该结构是由

不同层和复合物简单叠加到成形板或传送带上形成的。最终所得到的产品表面材质

是由所使用的外层的材质所决定的。然而由于在玻璃纤维布和外层之间缺乏整体紧

固措施,所选择的外层可能与石膏固化核心(set core)直接的结合不够牢固。在组装

EIF系统进行粘合连接时,这会引起非故意的层与层之间脱离。也有人建议将聚合

织物与增强玻璃稀织布结合在一起作为水泥板的面层。见美国专利6054205,其也

已列入参考文献中。

最近,也有人尝试用经树脂黏合剂粘合的随机走向的碎玻璃纤维毡作为面层材料,

参见美国专利4647496,4810569和5220762。这些专利中所描述的生产方法是利

用粘性控制剂如纸纤维、纤维素增稠剂、膨润土和淀粉,目的是使上面一层玻璃纤

维毡上无固化石膏,而不阻止从下面一层纤维毡的渗透。因为只需要石膏板的一面

没有固化石膏,用于粘附聚苯乙烯绝缘层,因此,设计出的一种可渗透下层玻璃毡

而仅仅部分地渗透上层玻璃毡的泥浆,生产出商业上可接受的产品。然而,由于没

有石膏浆对下层毡的渗透没有被阻止,这种解决方案没有彻底解决对玻璃毡贴面石

膏墙板起挤压成型作用的滚筒的污染问题。

尽管人们通过在固化板材上涂敷乳胶涂料,来努力地减小玻璃毡贴面石膏板的水分

渗透性(见美国专利5552187,已列入参考文献),但工匠们并不太赞成玻璃毡接触

石膏浆接触之前降低其孔隙率,原因有二:一是害怕泥浆不能充分地渗透到毡孔中,

导致低吸附性;二是考虑到低孔隙毡会阻止或减少水汽在固化过程中自核心顺利地

散发出来。

因此,目前水泥板制造业需要一种高强度且防火的面层材料,其置于潮湿环境中不

分层,还不充分渗透于水泥基材料泥浆,这是已知的会污染在这种板材的连续生产

过程中所使用的滚筒。

发明内容

根据本发明的一个实施例,本发明提供了一面层材料,其用于制造建筑用的水泥板。

该面层材料包括一含有玻璃纤维的多孔面层,所述面层防止在制造所述水泥板过程

中置于所述面层上的所述水泥基材料泥浆大量渗透其整个厚度。该多孔面层还允许

所述泥浆的水汽穿过。

本发明的面层材料使水泥板,例如由波特兰水泥和石膏制造的水泥板获得高强度和

比纸面板更好的阻燃性能。最优选的面层材料为对水泥基泥浆不充分通透的,这已

知会污染滚筒,并且更加适合与板材核心的结合以充分防止面层与核心之间的脱离,

或者如果采用超过一层面层的话也要充分防止面层材料各层之间的脱离。尽管本发

明的面层材料充分地减小了水泥基泥浆的渗透性,本发明的面层材料仍然允许固化

前和固化时水泥基材料中水汽的穿过。该面层材料和使用该面层材料生产的板材适

合于制作含有一种改进的石膏或水泥核心的室外级盖板。它们可以包括一面或两面

暴露的玻璃纤维,以协助连接到如外绝缘修整系统(EIF)或瓷砖支持物中的粘合剂

上,该粘合剂有如砂浆,基于丙烯酸或硅氧烷的粘合剂和胶水。本发明生产的水泥

板能包括一单面或双面含有玻璃纤维的多孔面层,且能在面、核心或二者中含有防

水和阻燃添加剂。

一含有玻璃纤维的多孔面层的实施例中玻璃纤维的平均直径约为16微米或更小,

该面层的面重量约为15-300克/m2,并且气体穿透率不超过约

300CFM/ft2(据FG436-910测试法)。本发明的一防水阻燃面层材料实

施例具中有的面重量为约15克/m2,理想的是面重量在约30和150

克/m2之间。该面重量高到足够可为板材提供所要求的物理性能如硬

度,弯曲强度,钉或螺钉夹持能力和尺寸稳定性,。该面重量轻到足以在被用于一

板子时能够被很轻松地搬运,并能被EIF系统或井墙系统施工人员处理而不会过早

疲惫。

本发明的面层和面层材料令人满意的特征包括对70°F时粘度约300-10,000cp泥浆

的基本不通透性,和螺钉夹持值至少为约20磅。当在水泥基材料上使用时,还在

直纹方向具有至少ASTM309拉伸强力约20psi,在横纹方向具有约5psi的拉伸强

力。

在本发明的一个进一步的实施例中,一种制造建筑用水泥板的方法,包括步骤(a)

形成一水泥基材料和水混合的泥浆,其分量多于固化所述水泥基材料所需要的泥浆

分量;(b)将该泥浆置于一第一面层顶面上,其中所述第一面是一种多孔材料,该

多孔材料含有主要起防止所述泥浆渗透作用的玻璃纤维,所述第一面层对从所述泥

浆中排出水汽是气体通透的;(c)将一第二面层置于所述泥浆顶面上;和(d)当来自

所述泥浆的水汽通过至少所述第一面层时,将所述泥浆固化成一固化核心。

在本发明的一进一步的实施例中,提供了一种建筑用的防水阻燃水泥板。该水泥板

实施例包括一层夹在一对面层中的所述水泥基材料,至少一包括有由采用树脂粘合

剂连接在一起的玻璃纤维所构成的第一层,该树脂粘合剂在湿润情况下对所述的水

泥基材料具有亲水性或粘附亲和力,该第一面层对气体穿透率不超过约

300CFM/ft2,以便充分阻止70°F时粘度小于5,000cp的所述水泥基材

料的泥浆前体的渗透,但允许所述泥浆中的水汽穿过。

在本发明的一更进一步的实施例中,提供了一种用于石膏板的面层材料,包括:一

第一层,其含有定向纤维层,对石膏浆通透;以及一第二无纺层,其与所述第一层

连接,对所述石膏浆的通透性比第一层小,且包括与由比纤维重量多约15%树脂

粘合剂所结合的和随机走向的纤维。该树脂粘合剂不阻止所述面层材料对所述石膏

的粘附,不会在储存时引起相邻板材间的“阻塞”。

附图说明

现参考以下附图对本发明作进一步的说明:

图1是本发明的一种优选的平纹织物面层材料的前视图;

图2是本发明的另一面层材料,显示五综缎纹织物;

图3是本发明面层材料的一进一步的实例,显示单向织物;

图4是本发明面层材料的一进一步的实例,显示具有织边的全宽平纹织物;

图5是建议的采用本发明面层材料来生产水泥板的连续生产线的概略侧面正视图;

图6是图5中有涂层的水泥板的放大图;

图7是处理之前的松散全宽平纹玻璃织物示意图;

图8是图7中玻璃纤维长丝被静电或机械处理后的全宽平纹玻璃织物;以及

图9是本发明的一种优选的复合面层材料的前视爆炸图。

定义的术语:

本发明提供了面层材料,水泥板和制造具有该面层材料的水泥板的方法。这些面层

材料具有低面重量,能充分阻止那些如包括波特兰水泥,砂浆和石膏的水泥基泥浆

的渗透,然而还保留有对水汽的足够通透性,可使水汽能够轻松通过。

本发明采用了以下定义的术语:

面重量(areal weight):织带或织物单位面积(宽度×长度)的纤维重量。水泥基材料

(cementitious material):无机水固化材料,例如那些包括一种或多种以下物质:波

特兰水泥,砂浆,灰浆,石膏和/或其它成分,如发泡剂,颗粒物,玻璃纤维,驱

潮剂和防潮剂和阻燃剂。

复合面层材料(composite facing material):两层或多层相同或不同材料组成,该材

料包括两层或多层织物,布,针刺物,毡,机织织物,无纺布和/或稀织布。

屏障涂层(barrier coat):用于复合结构的提供保护作用的外涂层。

织物(fabric):机织织物或无纺布柔性材料,如薄纱,布,针刺物,机织物,梳毛机

处理的薄纱,纺粘和点粘(point-bonded)无纺布,针刺或编织材料。

纤维(fiber):指丝状材料的通用词,通常,纤维与长丝是同义词。通常接受的是,

纤维具有比其直径大至少100倍的有限长度。在很多情况下,它是由从熔池抽丝,

纺丝或在底层沉积制造的。

长丝(filament):纤维状材料的最小单位。在抽丝和纺丝过程形成的基本单位,其聚

集成纤维股用于复合材料。长丝一般是极长极细的。当一些纺织长丝具有足够的强

度和柔韧性时,它们可以作为纱线使用。

玻璃(glass):一种无机熔合产品,冷却形成的无结晶的坚硬状态。玻璃一般是坚硬

和易碎的,破裂时成贝壳状。

玻璃布(glass cloth):一种定向织物,譬如可以是机织的,针织的,针刺的或编织的

玻璃纤维材料。

玻璃纤维(glass fiber):一种纤维,自无机熔合产品纺出,冷却形成无结晶的坚硬状

态。

玻璃长丝(glass filament):被拉伸成直径小长度大的玻璃形式。

针织织物(knitted fabrics):由长丝,粗纱或纱线的交织环链制成的织物。

毡(mat):一纤维性材料,由随机走向的碎长丝,短纤维,或用粘合剂疏松地结合

在一起的卷曲长丝组成。

粗纱(roving):若干纱线,股线,纤维束或经纱集中成少捻或无捻的一平行束。

拉伸强度(tensile strength):在量规长度范围内,样品单位面积截面上的最大负载或

受力。要求所施加的拉力能够断裂所给的样品。(见ASTM D579和D3039)

特(tex):用每1000米的克重表示的纤维线密度(或量规)。

纺织纤维(textile fibers):能够加工成纱线或通过机织、针织和编织这些不同方法制

成织物的纤维或长丝。

粘度(viscosity):材质实体内部展示的妨碍流动的性质,用施加的剪切力和剪切力

导致的应变速率的关系来表示。粘度一般用来指牛顿流体粘度,其中剪切力与应变

速率指比值是常数。对于非牛顿流体行为,该比值随剪切力变化。这种比值常被称

为相应剪切力下的表观粘度。粘度用单位为Pa·s(P)的流速来测量,以水为基准(值

为1.0)。数值越大,流速越小。

经线(warp):在机织物中沿纵向行走的纱线,纤维或粗纱。一组长度很长并基本平

行的纱线、纤维或粗纱。

织法(weave):将织物形成交织的纱线、纤维或粗纱的独特的方法。一般指派有一

式样数。

纬线(weft,也为fill,filling,yarn或worf):机织织物中的横向线或纤维。这些纤

维的走向与经线垂直。

机织织物(woven fabric):交织纱线、纤维、粗纱或长丝构成的一种材料(一般是平

面结构),用以形成诸如平纹、通丝缎纹或纱罗的织物图案。

玻璃纤维方格布(woven roving)。由纺织粗纱或纱线束制造的重玻璃纤维织物。

纱线(yarn):自然的或人工的加捻长丝、纤维或股线的组合,用以形成适合于机织

或交织成纺织材料的连续丝状物。

零捻纱线(Zero-twist-yarn):一种轻质粗纱,也就是一股接近零捻的且具有典型的线

密度和长丝直径的玻璃纤维纱线(但基本上无捻)。

具体实施方式

参考附图,特别是其中的图1-图4,其描述了在本发明优选的面层材料的面层中所

用的一系列织物。优选针刺、机织、针织和复合材料,因为它们具有令人注目的强

度重量比,并且对于机织物和针织物来说,它们能够形成可充分防止水泥基泥浆渗

透的经线和纬线模式。尽管本发明的面层可以含有有机和无机材料的纤维和长丝,

但最优选的材料包括玻璃,烯烃类(如聚乙烯,聚苯乙烯和聚丙烯),凯夫拉尔纤维

(Kevlar_),石墨,人造丝,聚酯,陶瓷纤维,或它们的组合物,如玻璃-聚酯混合

物,Twintex_玻璃-烯烃复合物,可从法国的圣戈班公司( Corporation,

France)获得。在这些纤维和长丝中,玻璃合成物是最适合的,因为它们具有防火、

低价和高机械强度的特点。

玻璃组分(glass composition)

尽管已开发出很多玻璃组分,但只有几种得到商业化应用,用于制造连续的玻璃纤

维。四种主要使用的玻璃是高碱性玻璃(A型玻璃或AR型玻璃),适用于砂浆或水

泥,如瓷砖支撑;电子级玻璃(E型玻璃),抗化学腐蚀的改进E型玻璃(ECR型玻

璃),和高强度玻璃(S型玻璃)。这四种玻璃的代表性化学组分如表1。

表1玻璃组分

具有这些化学组分的四种玻璃纤维的固有特性如表2。

表2玻璃纤维的固有特性

pec>

y>比重 拉伸强度

nameEnd="c006" nameStart="c005"> 拉伸模量 热膨胀系数

介电常数 液化

温度

MPa ksi

ntry> GPa 106psi 10-

6/K (a)<

/Tbody>

p>

E型玻璃A型玻璃ECR型玻璃S型玻

2.582.502.622.48 3450

5 72.569.072.586.0 10.510.010.512.5

entry> 5.08.65.05.6 6.36.96.55.1 1065996120

41454 1950

TableFormula>

(a)20℃(72F°)时,1MHZ.来源:参考文献4

玻璃熔化和成型

将前炉熔化的玻璃转化为连续的玻璃纤维基本上是一拉细过程。熔化的玻璃流经一

铂铑合金拉丝坩埚,其上具有大量的小孔或喷嘴(典型产品上有400-8000个)。拉丝

坩锅用电加热,热量被非常精确地控制以维持恒定的玻璃粘度。当纤维离开拉丝坩

锅时,纤维被拉出并被迅速冷却。接着用一涂抹器在通过的纤维的表面上涂抹一层

浆料,该涂抹器通过浆料池被带动连续旋转以保持玻璃长丝穿过的一薄膜。上完浆

料后,玻璃长丝在靠近卷绕设备之前聚集成股。如果需要得到更小的长丝束(劈股

(split strands)),则需要用多个收集器(通常称为靴(shoe))。

拉细率,并由此决定的最终长丝直径是由卷绕设备控制的。纤维直径也受拉丝坩埚

温度、玻璃粘度和拉丝坩锅压力的影响。最广泛使用的卷绕设备是成型络纱机,其

采用一旋转夹头和一横向机构,在成形包直径增大时随机分布股线。这有利于在后

续工序中将股线从包中拆除出来,如成粗纱或切碎。干燥成型包并将其转移到特定

的加工区域,以转化成精细的玻璃纤维粗纱,毡,碎切股,或其它产品。近年来,

在成型过程中直接生产精细粗纱或碎产品的工序得到了发展,因此出现了术语直接

拉丝粗纱(direct draw roving)或直接碎切股(direct chopped strand)。

制造工序

一旦生产出连续玻璃纤维,它们就必须按使用要求转化成合适的形式。主要的完成

形式是连续粗纱,玻璃纤维方格布,玻璃纤维毡,碎切股和纺织上应用的纱线。

将一束股线聚集成一单根大股线,其缠绕成一稳定的圆柱包制造成玻璃纤维粗纱。

这被称为多股合股工序。该工序开始是将一定数量的烤干的成形包放置进一绕丝机

上。随后将股线的端部在张力作用下聚集在一起,并收集到一具有恒定的横向缠绕

比的精密粗纱络纱机上,称为路绕丝(waywind)。

本发明的很多方面都用到了粗纱。玻璃纤维方格布是将玻璃纤维粗纱织成织物形式

而生产的。由此生产的粗糙制品应用于连续水泥板的生产中。粗糙的表面对于灰泥

和涂敷粘合剂是很理想的,如EIF系统,因为这些材料能容易地结合到粗糙纤维上。

平纹和斜纹织物粗糙性差一些,因此更容易操作,不需要手套,但可以吸收灰泥和

粘合剂。相对于单向缝合或针织的织物主要增加一维强度,它们还可以在两个方向

上增加强度。目前还可获得很多新颖的织物,包括特殊用途的双轴,双斜纹和三轴

织物。

玻璃毡,稀织布,碎纤维和机织或针织长丝或无捻粗纱的合成物也可以用作本发明

的面层材料。适当重量的玻璃毡(一般是碎切股毡)和玻璃纤维方格布长丝或疏松碎

纤维或者是用化学粘合剂或机械针织,针刺粘结结合在一起或者是缝合在一起。一

适宜的合成物是玻璃纤维和/或树脂纤维毡或稀织布,其为加入碎玻璃或树脂纤维

分层的,然后针刺、粘结或缝合在一起以减少孔隙率。这些面层材料可有一致的孔

隙率或者在x、y或z平面方向具有不同的孔隙率。例如,在美国专利3,993,822和

4,504,533中,一孔隙率梯度可在一复合面中产生出来以允许泥浆的部分渗透。或

者,涂料或浸渍剂,如乳胶树脂或润湿剂或非润湿剂,可以不均匀地涂布到面层以

允许泥浆的部分渗透。例如,可用低接触角物质涂覆面的泥浆侧,并用树脂性浸渍

剂或高接触角物质或疏水试剂涂覆面的外侧。

如果相对说来,玻璃纤维纸对泥浆不通透而对水汽通透,则其也可以用于本发明的

面层中。长度为25-50mm(1-2英寸)的碎切股一般被用于制造玻璃纤维纸。在此工

序中,将撒布碎纤维到水中以形成稀溶液。在搅拌和撒布过程中,玻璃纤维股单纤

维化。将该溶液泵到一不停移动的链条或带状物上,在此处大部分的水分都被真空

去除,剩余的就是分布一致的薄玻璃纤维毡。在线上添加一种粘合树脂,然后再干

燥和养护,以形成玻璃纤维纸。尽管玻璃纸比机织玻璃布的机械强度低,但造价便

宜并防火。

本发明面层的纱线可用传统方法制造。成型操作中的纱线细纤维股可以在成型纱管

上风干,以提供足够的集束性经受加捻操作。加捻为纱线在机织过程前提供额外的

集束性,典型的加捻由每英寸至多1圈组成。在很多情况下机织操作需要更重一些

的纱线。这一般是由将两个或多个单股捻合在一起后再进行绞合操作而获得的。绞

合实质上涉及将捻合的加捻股在原捻向的相反方向上加捻。通常使用的有两种捻,

S捻和Z捻,它们分别表示加捻的捻向。一般是将采用S捻捻合在一起的两股或多

股纱线与一Z捻绞合在一起以提供平衡的纱线。因此,纱线的特性如强度、束直

径和回收率,可采用加捻和绞合操作来处理。玻璃纤维纱线通过传统机织操作转化

成织物形式。在工业上使用的纺机有多种,其中最受欢迎的是喷气织机。

也可以使用零捻纱线。这种进料使覆盖有精细长丝纱线的(无捻)粗纱易于扩展。每

股长丝的数量直接影响到孔隙率并与纱线的重量有如下关联:n=

(490x Tex)/d2,其中d指微米单位中所表示的单长丝直径。因此,如

果具有粗糙长丝的粗纱可用长丝直径减半的接近零捻纱线替换,则在相同股特

(strand Tex)的情况下,长丝的数量增加4倍。

本发明的机织面实例的主要特征包括其式样或织物图案,织物经纬密度,和经线纬

线的构造。综合起来,这些特征决定了织物的性质如悬垂性,和在最终水泥板中的

性能。织物经纬密度表示每英寸的经线和纬线数量。经线与机器方向平行,纬线与

其垂直。

有四种基本的织物图案:平纹,席纹,斜纹和缎纹。平纹织物是最简单的形式,其

中一经线在一纬线上下与其交织。席纹织物则有两根或多根经线在两根或多根纬线

上下与其交织。斜纹织物是一根或多根经线在至少两根纬线之上与其交织。缎纹织

物(四枚缎)由一经线在三纬线之上和一纬线之下与其交织,以赋予织物不规则的图

案。八综缎纹织物是一特例,其中一经线在七根纬线之上和一根纬线之下与其交织

以形成不规则图案。在制作水泥板时,缎纹织物对复杂轮廓,如角落附近,具有最

好的整合性,随后依次是斜纹,席纹和平纹织物。

卷曲工艺是指用空气喷射冲击纺纱的表面制造纱线“绒毛”。空气喷射引起表面长丝

随机断裂,使纱线具有蓬松的外观。蓬松发生的程度由空气喷射的速度和纱线的进

料速度决定。以静电或机械处理纤维,纱线或粗纱也可以达到相同的效果。

织物设计

织物的模式,常称作构造,是一x,y坐标系。y轴表示经线,是织物卷的长轴(典

型的为30-150m或100-500英尺)。x轴是纬线方向,也就是织物卷的宽度(典型的

为910-3050mm,或36-62英寸)。基本的织物种类很少,但不同种类和尺寸的纱线

与不同的经纬密度的组合可形成几百种不同的变化。

基本的织物结构包括那些由机织,非机织和针织过程制造的织物。本发明中,本发

明一优选的设计是一针织结构,其中x轴纱线和y轴纱线用另一纱线或针织线结合

在一起。这种针织类型为纬入经针织物。如果采用非错列针织物,则x轴和y轴纱

线压缩最少,因此在一定的面重量情况下可提供最好的覆盖范围。如果采用接近零

捻纱线或在自然状态下比紧捻的纱线更为伸展的粗纱,这种结构的覆盖范围可进一

步增加,也就是进一步减少孔隙率。通过机械(针刺法)装置,或在织物形成之前或

之后用高速气流分散长丝来协助长丝的撒布,可对这种设计做进一步的改进。

最经常使用的织物结构为平纹10,可用于任何织物,从棉衬衣到大型运动场的破

璃纤维天蓬,如图1所示。它的基本结构只需要4根机织纱线:两经线和两纬线。

基本单位称为重复的图案。作为最紧密交织的织物形式,平纹10因此在基本织物

模式中成为最紧密的一种,并且对平面剪切具有最好的抵抗力。席纹,作为平纹的

一个变种,其具有相互配对的经线和纬线:两上两下。缎纹15代表具有最少的交

织一族结构。在这些结构中,纬线不定期地跳跃或浮在几根经线之上,如图2所示。

缎纹15的重复花样为x纱线长,浮纱长度为x-1纱线,也就是,在一个重复图案

的一根纱线上只有一个交织点。没有织入织物中的浮纱产生出相当可观的松弛度或

柔度。缎纹15产生的结构对剪切变形的抵抗力弱,并因此容易在通常的复合曲线

上模压(褶皱)。缎纹可以制成标准的4-,5-或8-综丝形式。当综丝的数量增加,同

时浮纱的长度和松弛度也相应的增加,使织物在操作过程中更加难以控制。平纹纺

织织物一般具有更好的拉伸强力,但缎纹具有更好的撕破强力。极限的机械性能从

单向类型的织物14(图3)获得,当其附着在一凝固芯101上,其载体性质实际上消

失了。纱线的交织程度越高(对一给定的纱线尺寸来说),每单位长度上可被织入的

纱线的数量就越少。纱线之间必要的分隔减少了可包扎在一起的纱线数量。这就是

单向材料可具有高纱线密度(纱线数量/英寸)和更好的物理性能的原因。

具有玻璃质的纬线11和经线12纱线或粗纱的一平纹织物16,在织物结构中称作

闭锁纱罗(图4),只在织物的特别区域使用,如镶边13,并且在无梭织机上生产。

缠绕罗纹纱的啮合动作锚定或锁定在剑杆织机上生产的开口的镶边。罗纹织物帮助

纺织镶边13在随后的处理过程中拆开。但是,也发现一非常大开口(但很稳定)的

织物的应用场合。

适于本发明的玻璃织物的设计只从几个织物参数开始:纤维类型,纱线类型,织物

图案,纱线密度和面重量。

纤维涂层也很重要,因为当纤维暴露在时而剧烈的机织过程时,涂层可协助润滑和

保护纤维。机织织物的性能一般在完全由涂层的类型和质量来决定。然而,涂层的

选择一般由最终用途和树脂的化学性能决定,并可包含树脂类材料,如环氧树脂。

下列的织物类型和种类在实践本发明过程中是有用的:

织物 面重量

克/平米 oz/yd2

轻质 10-35 3-10

中质 35-70 10-20

重质 59-300 15-90

织物 厚度

微米 密耳(mil)

轻质 25-125 1-5

中质 125-250 5-10

重质 250-500 10-20

已确定织物的面重量为约15-300g/m2,优选为约30-

150g/m2,且最优选厚度约1-22mil。这种织物应该具有在10-

300CFM/ft2的气体渗透速率(FG436-910检测方法),优选约

10200FM/ft2,和/或能够充分的减少泥浆的渗透,在70°F时的粘度大

约在300-10000CP,优选少于5000CP,最优选约1000-4000CP。优选的面层材料

也应该在直纹方向具有至少ASTM309拉伸强力20psi,在横纹方向具有约5psi。

组合了具有非常不同特性的纤维能够使一织物具有好的纵向强度/硬度值,以及横

向(纬线方向)韧性和抗冲击性能。将不同的纤维混合使用能够给予水泥板的设计者

更大的自由,以满足不同甚至可能是相互矛盾的要求,而无需大的妥协。它还可能

“教导”织机一些新的技艺,特别是在三维机织方面,但甚至在二维织物方面作一些

有趣的改进也是可能的。织机能够利用不同的经线和纤维纬线机织无接头的螺旋线。

或者例如,可以采用玻璃原料的粗纱经线17和合成纤维纬线18,如聚乙烯,聚苯

乙烯纤维、如图3所示。或者混纺纱线,如Saint-Gobain S.A.生产的Twintex_玻璃-

聚合物泥纺纱线,单独的多层聚合物,弹性材料,人造纤维,聚酯和玻璃纤维可以

作为外部材料的粗纱或纱线,或者作为机织织物、针织毡或无纺布层额外的粘合或

缝补层。

例如,一轻质热塑塑料,热固性塑料和/或玻璃纤维层111,例如一机织织物,针

织织物,无纺织物,纸,针刺层或毡能够用一更加牢固和多孔的层,如聚合物或玻

璃稀松布104,或疏松针织或机织的底层,被层叠,粘着,针缝,缝合,机织,熔

融粘合或采用以上技术的组合来使它们结合,如图9所示,以提供抗泥浆渗透和芯

加固功能。(参见Altenhoferetal.,.4,504,533,或Knauf et al.,

.3,993,822,二者均已列入参考文献中。)稀松布104可以为机织的开孔

丝网或采用或不采用粘合剂或浆料在交叉点结合的一般横向和纵向的无纺纤维,并

包括如纤维,粗纱或纱线。如此,密集度更高的轻质层111仅仅提供有限的或微不

足道的石膏或水泥泥浆的渗透,而稀松布104可被植入到核心101中,以给核心

101提供好的机械粘附性,并给水泥板100提供更强的整体强度。另外,由于稀松

布104能够在粘附在核心101之前加固轻质高密度层,轻质高密度层111可以是廉

价的,并且不需要具有拉伸强力以便自身能够耐受连续的水泥板加工生产线的严酷

条件。如此,稀松布104承担强化轻质高密度层111的任务以防止所述层和面层自

身整体自然地在连续板制造中的变形。可选择的,一额外的轻质层117可被添加到

稀织布104的固定核心面侧。轻质层111、117不必是同样的密度,也不必含有同

样的纤维性材料,并且每层可以是或不是浸渍的或涂层的。

进一步参考采用一轻质层117和机织织物层或稀织布104作为本发明水泥板100的

一面或各面的一优选结构,优选的设计采用一轻质层117,其采用以树脂性粘合剂

结合在一起的随机走向的玻璃毡,如:尺寸为K-纤维(13微米);H-纤维(10微米);

或M-纤维(16微米),或更细的玻璃纤维。大家知道,一般来说,在相同的面重量

的条件下,用H-纤维制造的随机走向毡的密集程度大约是用M-纤维制造的随机走

向毡的两倍,优选1-3磅(1bs)/100平方英尺(ft2),更优选1.8磅/100平

方英尺。稀织布104可以比轻质层117更轻或更重,优选与轻质层117的用粘合剂

连接,例如核心或树脂性粘合剂,或者采用机械连接,如缝合,针刺等。

随机走向的玻璃毡一般采用湿加工,其中单根或连续的纤维置于泥浆中,然后用筛

网或多孔带收集,以去除水分。去除水分的纤维再用小瀑布式的粘合剂(也称为“上

浆”)处理,粘合剂应用到纤维上而被吸入。或者,玻璃纤维可被湿加工或进一步补

充热塑性纤维,它能被熔入随机走向的玻璃纤维中以提供树脂性粘合剂。

一典型的粘合剂/玻璃棉填充物的重量占3-15%,但是本发明预期在外层的一层或

多层使用超过15%重量的粘合剂,优选超过20%重量,最优选大约25-30%重量

的粘合剂,如上述的随机走向的玻璃毡,以提供所期望的性能,如防止泥浆渗透,

粘附到核心101或其它层或其它材料上,疏水或亲水性能,或者这些性能的组合。

这些粘合剂并不是障碍层,它们可以让水气在水泥板制造过程中透过面层。这些粘

合剂最好不完全覆盖外表面纤维,以便能够附着到在水泥板外表面上使用了如基于

波特兰水泥的砂浆,丙烯酸粘合剂,硅粘合剂和胶水的涂层或粘合剂的制造厂或现

场。选择的粘合剂也应该尽量减少“粘连”(储存时相邻水泥板的粘合连接)。为了这

个目的,有多种粘合剂可以被采用,如,石炭酸粘合剂,脲醛树脂,或丙烯酸修饰

的脲醛树脂,苯乙烯丙烯酸,采用或不采用羧酸酯聚合物作为粘合剂分子的一部分

或作为单独的添加剂。另外,这些粘合剂中可以加入添加剂,如紫外线或霉菌抑制

剂,阻燃剂等。向粘合剂中加入羧酸酯聚合物能增强其对凝固石膏或基于波特兰水

泥的砂浆的亲和力,但是与没有这些添加剂的树脂比较,还不易发生粘连。一种特

别合适的粘合剂树脂复合物的组成是70%重量比的脲醛树脂,30%重量比的苯乙

烯丙烯酸乳胶或丙烯酸乳胶混合物,外加羧酸酯添加剂。

优选的复合面层材料还应该包括一稀织布104或一织物或编制结构,其为多孔结构,

可透过石膏或水泥泥浆。理想地,稀织布104包括一6×6纱线/英寸简易织物或粘

合的网格机构,尽管尺寸从约4×4到10×10纱线/英寸也是可接受的。优选的稀织

布104的纤维尺寸是约68特(G75;EC968),既经济又可大量获得。稀织布104或

相当层还可包括一浆料,其在化学成分上可与以上描述的相同或不同。可以理解的

是,这种应用到轻质层117或疏松层104的浆料在最终应用时可按照用户要求定制。

例如,稀织布104可采用羧酸酯化苯乙烯丙烯酸或对石膏核心有更好亲和力的丙烯

酸混合物处理,而轻质层117的粘合树脂可用一疏水添加剂处理,以便防止泥浆渗

透。这里建议的其它添加剂和树脂复合物在水泥核心101和涂料或浸渍剂107中是

有用的,可以加入到粘合剂中。

用于构造多孔面层的本发明的底层或各层在附着到核心材料之前可进一步处理或浸

渍,以便进一步减少孔隙率,从而防止泥浆渗透和减少表面的“绒毛”,这些“绒毛”

在反复加工过程中会导致皮肤发痒。树脂性涂料和浸渍剂107与上述的用于将纤维

连接一起形成独立层的浆料和粘合剂不同,如前所述。涂料和浸渍剂107可包括那

些在US4640864(已列入参考文献中)中描述过的,优选具有防水和/或防火性能的。

它们可在制造本发明的多孔面层时使用,或由水泥板制造者在制造水泥板前使用。

这与为修整的水泥板加入防水剂而固化石膏核心后,在修整的水泥板的面层所应用

的涂层不同。见US5552187。

见图6,应用到本发明多孔面层的浸渍剂或涂料107优选覆盖纤维的一部分并减少

面层的孔隙率。可以选择的,浸渍剂或涂料107能够增大或减小石膏泥浆的润湿角

以减小渗透性或增大粘附力。浸渍剂或涂料107能进一步包含紫外线稳定剂,霉菌

抑制剂,防水剂,阻燃剂和/或其它可选成分,如分散剂,催化剂,填充剂以及类

似物。优选的是,浸渍剂或成液体形式的涂料107,而面层材料从液体中穿过或液

体喷射(有或没有一水喷射预报器)到面层材料的一面或两面。例如,能粘附石膏的

树脂仅能用于轻质层117的核心面侧和稀织布104的整个周围,以便增强对核心

101的粘附。此后,面层材料可能经过挤压并干燥。

使用这种液体的方法有多种,包括浸渍覆膜装置,刮墨刀装置,卷绕镀膜装置及类

似装置。一优选的用本发明的树脂性涂料或浸渍剂107处理面层材料的方法,是将

一轧辊的下部部分浸渍在一装有上述液体树脂复合物的水槽中,并将面层材料压在

这一轧辊的上部,以便一定量的树脂复合物转移至面层材料。在这一轧辊之上的另

一轧辊控制面层材料的移动以及保证树脂涂料或浸渍剂107在其上的使用量的一致

性。此后,覆有涂层的面层材料被引入一蒸汽罐中以加速干燥的优选的方法。优选

将覆有涂层的面层材料经过一约250-450°F(100-200℃)的蒸汽罐,其将水分去除,

如果使用了乳胶,则还可以引起液体树脂材料进一步填充缝隙和减少面层材料的孔

隙率,以及涂覆在面层材料内更一致的纤维。涂料优选覆盖目标表面积的约50-

80%,更优选覆盖所述的面积的8095%;100%的覆盖是不太适宜的,因为在石膏

产品固化时产生的水汽会引起爆裂和起泡现象。理想的情况是,浸渍的表面在一定

程度上对液态水不通透,但可透过水汽,不论在潮湿或干燥状态下,都不应该成为

水汽通过的减速物或障碍物。

本发明优选的浸渍剂或涂料107可包括含有一种或多种树脂的树脂混合物。树脂可

包含固体颗粒或纤维,它们聚结或融化形成连续或半连续的涂层,该涂层充分地防

止液态湿气的穿过,但允许水汽从面层的横截面穿过。涂料可采用各种厚度,例如,

为了充分地覆盖面层的纤维性组分以便没有纤维从涂料或浸渍剂上突出出来,或者

覆盖到一定程度使纤维从涂料或浸渍剂上突出出来以便用来连接EIF系统中的附加

层或瓷砖。这种树脂性涂料或浸渍剂形成了一液体水屏障,它在水泥板的制造过程

中可保护轧辊和其它设备,并且可在后来,可选的,用来保护下层的固化石膏在保

存或使用时免受潮气。

树脂涂料或浸渍剂107可包含一热塑性或热固性树脂。很多可有效地形成防水或防

风化涂层的树脂都可在市场上获得。可选择地,本发明优选的涂料或浸渍剂107能

够形成一涂层,其表面水吸附值不大于0.05克,为改进可勃法测量

(Modified Cobb Test)的结果,其中一5平方英寸的涂层样品与一装有水的4.5英寸

直径x1英寸高的可勃环(Cobb ring)接触2小时。在这一具体实例中,在采用防水

核心配方的情况下,根据美国材料实验协会(ASTM)C-473的浸渍测试方法,水泥

板也应该吸收不超过10%重量的水分,优选不超过5%。

本发明的涂层或浸渍剂107可主要由防水树脂形成,但采用树脂和填充剂,如硅酸

盐,硅土,石膏,二氧化钛和碳酸钙的混合物形成的涂料或浸渍剂也能获得很好的

效果。浸渍层或涂层107使用时可为乳胶或可养护的热固形式。可接受的树脂包括

苯乙烯丙烯酸共聚物,丙烯酸树脂,阻燃丙烯酸树脂或溴化单体的丙烯酸树脂,如

Pyropoly AC2001,聚醋酸乙烯酯,聚乙烯醇,偏氯乙烯,硅氧烷和聚氯乙烯如

Vycar_578。另外,阻燃剂,如溴磷复合体,卤化石蜡,胶质五氧化锑,硼砂,无

扩张的蛭石,粘土,胶质硅土和胶质铝也可加到涂料或浸渍剂中。此外,防水添加

剂象石蜡,以及石蜡和铵盐,含氟化合物的组合也可以添加进来,用以增强防酒精

和防水性能,如3M公司的FC-824,有机氢化聚硅氧烷,硅油,蜡沥青乳状液和

聚乙烯醇,另加或不加少量的聚醋酸乙烯酯。最后,浸渍剂和涂料可包含色素,如

高岭土或灯黑增稠剂,如修饰的膨润土,去沫剂,如脂肪酸/聚乙二醇混合物,抗

紫外线添加剂,固化加速剂,如粘土化合物,聚丙烯酰胺,钾盐或它们的组合,和

分散剂,如聚丙烯酸钠。已知的防腐剂和水当然可加到乳胶复合物中,以及热固混

合物中的溶剂(例如,见美国专利4640864,其中的绝缘板包括基于聚氯乙稀的涂

料,其中含有阻燃和防水剂,已列入参考文献中)。上述建议在粘合剂或水泥核心

101中有用的其它的添加剂,也可用于涂料或浸渍剂107中。

关于这点,一些优选的叠片层结构,例如,在以前讨论图9时提到的,可包括涂料

或浸渍剂,它能协助将叠片连接到固化核心101上,或者协助其减少孔隙率以防止

泥浆渗透,和/或帮助降低对工作人员的刺激。一见证预期的叠片层包括一由聚乙

烯醇覆盖的玻璃纤维稀织布104制成的叠片,该叠片层采用聚乙烯醇粘合剂层压到

一玻璃纤维毡或织物111上。该纤维毡或织物层可以采用聚乙烯醇树脂浸渍或不浸

渍。在本发明的第二个例子中,一叠片由聚乙烯醇覆盖的玻璃纤维稀织布104构成,

它是采用阻燃和抗紫外线的丙烯酸树脂粘合剂层压到一玻璃纤维毡或织物上。该毡

或织物层可以采用丙烯酸粘合剂浸渍或不浸渍。

水泥板制造

参考图5,其描述了一优选的连续生产水泥板100的方法。

尽管优选经稍稍改进的传统墙板制造设备来制造本发明的水泥板100,但也可采用

其它多种方法制造,包括模制,挤压成型,和采用本发明的玻璃织物的滚筒和片断

的半连续工序。

见图6,其为图5所示覆盖板的部分放大图,图5为优选的水泥板100的详图。水

泥板100包括一固化核心101,由如固化石膏或波特兰水泥制造。理想地,固化核

心101还可包括填充剂,增强纤维102和性能添加剂103。增强纤维102最好包括

长度不超过2英寸的碎纤维,用来加固固化核心101。这些纤维102可包括,如凯

夫拉尔,玻璃,聚烯和纤维素纤维,如稻草杆或纸纤维。性能添加剂103可包括防

水添加剂如硅有机树脂,阻燃剂如硼砂,以及在以上讨论面层的树脂性浸渍剂或涂

料时提到的其它防水阻燃剂。制成固化核心101的成分可进一步包括可选组分,包

括例如石膏和水泥外盖板含有的组分,如固化加速剂,发泡剂和分散剂。

已有报道的能有效地改善水泥制品的防水性能的材料的例子,无论其作为涂料107

还是性能添加剂103,为如下成分:聚乙烯醇,加或不加少量聚乙烯醋酸酯;金属

树脂酸;蜡或沥青或它们的混合物;蜡和/或沥青和玉米粉和高锰酸钾的混合物;

水不溶性的热塑性有机材料,如石油和自然沥青,煤焦油,和热塑性人工合成树脂,

如聚醋酸乙烯酯,聚氯乙稀和醋酸乙烯酯和氯乙烯的共聚物和丙烯酸树脂;松香脂

肪酸金属盐、水溶性的碱土金属盐和残余燃料油的混合物;石油蜡乳剂与残余燃料

油,松焦油或煤焦油中一种的混合物;一包括残余燃料油和松香,芳香族异氰酸酯

和二异氰酸酯的混合物;有机氢化聚硅氧烷和其它聚硅氧烷,丙烯酸树脂,和一腊

-沥青乳剂,其中添加或不加这些原料如硫酸钾,碱和碱土金属。性能添加剂103

可以直接加到水泥基泥浆28中。防潮涂层107可在面层材料与固化核心101连接

之前或之后涂到面层材料上。

如果使用石膏,核心101可由水与粉末状无水硫酸钙或硫酸钙半水合物

(CaSO4_H2O,)也就是所谓的烧石膏混合形成,然后让

该混合物水合或固化成二水硫酸钙(CaSO4 2H2O),其为

相对坚硬的材料。支持物的固化核心101一般包括至少85%重量比的固化石膏或

水泥。

固化核心101的表面用一层或多层面层材料包面。该面层材料应该有足够多的气孔,

以便让将制成核心101的水泥浆中的水分在那里蒸发出来。如以下描述的细节,可

以通过形成一含过多水份的含水泥浆和之后放置面层材料而有效地制造出本发明的

水泥板100。辅以加热,当水泥基泥浆28固化时,过量的水分从优选的上下玻璃

纤维面105,106中蒸发出来。

连续制造方法

本发明的一个引人注目的特征是水泥板100可以利用现有的墙板生产线来生产,如

图5所示。传统方法,形成固化核心101的干组分(未示出)是预先混合的,然后输

送到一通常称作针式搅拌器(pin mixer)30类型的一搅拌器中。用于生产核心101的

水或其它液体组分(未示出)定量输送到针式搅拌器30中,在此它们与干组分结合

形成含水水泥基泥浆28。一般在针式搅拌器30中的泥浆中加入泡沫以控制最终的

固化核心101的密度。

一般地,与制造玻璃毡石膏或水泥制品相比,本发明的面层材料更允许使用更低粘

度的泥浆。代表性地,如美国专利5319900(已列入参考文献中)第12列第45行至

第13列第2行所提到的使用粘度控制剂,如纤维质增稠剂,膨润土,淀粉和石膏

须晶纤维,用来提供粘度约为5000-7000CP(Brookfield实验法,70°F,10rpm,3号

搅拌器)的石膏泥浆。由于优选的面层材料对泥浆渗透的障碍,本发明能使用粘度

远低于5000cp的泥浆,优选70°F时约1000-4000cp,其决定于选择的产品和上、

下或两面面层材料是否不含有石膏或水泥,和/或防止泥浆和液态水的渗透。由此

形成的泥浆28通过针式搅拌器30底部一个或多个出口撒布到一移动的底部玻璃织

物22上,该玻璃织物可选择含有本发明的一层或多层面层材料。底部玻璃织物22,

可以含有并且优选含有本发明的面层材料,在长度上没有限制,通过底部的玻璃织

物滚筒20输送进来。

如生产传统纸面石膏板的一般惯例,所述的底部玻璃织物22的两个相对的边缘部

分逐渐从该织物22的中间平面向上弯曲,然后在边缘部分向内翻转,以便向得到

的水泥板100的边缘提供覆盖物。

一层顶部玻璃织物32被从顶部玻璃织物滚筒29输送到水泥基泥浆28上部,因此

将泥浆夹在两移动的纤维毡中,该纤维毡形成由所述水泥基泥浆28形成的固化核

心101的面层。底部和玻璃纤维22、32,及夹在它们之间的水泥基泥浆28进入上

部和下部形成或成型滚筒34、36之间的辊隙,随后被传送带38接受。传统的墙板

边缘引导装置40使复合物的边缘成型并维持直至泥浆充分固化到保持其自身形状。

便利水或剩余水可在置于传送带38之下的真空箱42的协助下被排出。在适当的时

候,水泥板的序列长度被水刀44切断。水泥板100接着沿进料滚筒46移动以便让

其固化。它被暴露在一烘箱48中加热以进一步加工,该烘箱通过增加剩余水的蒸

发速率以加速该板的干燥。可提供一额外的喷雾器49以便对该板的外部进行进一

步的处理,如硅油或阻燃剂。

本发明的面层材料和水泥板100在各种建筑施工中都是有用的。对于具有传统密度

和组分的石膏核心来说,它们很结实,螺旋强度为至少20磅左右。一些例子如升

降梯和楼梯的井墙组合体,防火门和防火墙,屋面顶和侧墙底层,有或没有绝缘材

料,和瓷砖支持板。本发明的一最具价值和最有用的应用在于外绝缘修整系统

(EIF systems,即Exterior Insulation Finishing Systems)。

EIF系统的关键部分包括一些形式的绝缘材料,它处于一底层的支持面和一外部装

饰材料之间,外部的装饰材料本身可以是绝缘材料的主要部分,但一般是在施工现

场涂到绝缘材料上。包含本发明面层材料的水泥板尤其对支持面有用。从一个EIF

系统到下一个EIF系统,存在各种各样的结构细节和成分。例如,尽管外修整材料

可以直接贴附在绝缘材料上,还是存在多种在外修整材料和绝缘材料之间加入一加

固组分的系统。该加固组分一般包括一层或多层增强玻璃纤维织物或网织品,它们

通过合适的胶泥粘附到绝缘材料的表面。在一些系统中,支持面贴附到固定在一建

筑物外墙外表面的木质框架上,然而在其它一些系统中使用的是金属框架。在某些

应用中,支持面可以直接贴附于外墙外表面,例如,包含空心砖或混凝土砖的外墙

外表面。在新型建筑中,该支持面典型的是直接贴附于建筑物的框架上。用来结合

系统各组分的粘合剂或胶泥倾向于自这一系统向下一系统变化,典型的是含有特别

组成的专有成分。

目前,在EIF系统中最流行使用的绝缘材料是膨胀或发泡苯乙烯,其具有很好的防

潮性能。尽管它具有令人满意的低水汽传输性,但并不是一水汽屏障,相反其还具

有呼吸功能。膨胀苯乙烯的硬质板在EIF系统得到了广泛的应用。这种硬质板具有

令人满意的抗压强度和弹性,目前可得到的厚度为1/2-6英寸,宽度在6-48英寸,

长度在4-16英尺之间。一市场上销售的系统采用的硬质膨胀苯乙烯板的尺寸为

2’×4’×1”。

其它的一些热绝缘材料也可以用在EIF系统中,例如挤压成形苯乙烯,聚氨基甲酸

脂,异氰脲酸酯,基于水泥的绝缘灰泥和酚醛泡沫。绝缘材料一般具有低热传导性

和低密度的性质。

如上所述,多种EIF系统包括一加固组分,例如,成织物形式,夹在绝缘材料和外

修整材料之间。目前,玻璃织物是最广泛用来加固这种系统的,也就是用来增强该

系统的冲击强度。至于特定的玻璃织物的类型和其使用的层数则取决于所期望的抗

冲击性能。能够在这种系统中使用的强化织物的例子有机织玻璃,玻璃纤维稀织布

和玻璃纤维网织物。安装该强化织物通常是将合适的粘合剂涂在绝缘材料的表面后

再贴上该织物。如果想要的话,还可以增加几层织物。作为一个例子,水泥/丙烯

酸树脂可用来作为粘合剂。

外修整材料可被直接贴附于绝缘材料或一中介面上,如以上所述的增强组分的表

面。外修整材料应该具有防风化性能,并且最好在有可人的外观。当前,最广泛使

用的外涂层是一基于丙烯酸树脂的混合物,其糊状形式是可用的,被撒布或用涂抹

在底层上。该混合物的一种类型可描述为预拌合成树脂膏状物。使用之后,树脂固

化形成为一牢固地粘合于底层的坚硬的防风化固体材料。市场上的这种树脂泥合物

具有各种颜色,包含有可选择的不同大小的颗粒。这就使得涂敷人员可选择特定的

组分以便形成质地从精细到粗糙的的涂层。具有灰泥样外观的涂层是很受欢迎的。

可在这种混合物中嵌入各种颜色的小石子以达到装饰效果。其它的可作为外涂层材

料的例子有波特兰水泥灰泥,包括入沙粒和大一些的颗粒。外涂层的厚度范围较大,

例如厚度从约1/16”到1/4”。

如前所述,可以认识到本发明提供了用于水泥板的面层材料,其是轻质的,与固化

的水泥核心材料结合后显示出高强度,并且保持对水汽的通透性。本发明优选的玻

璃织物面结合到固化的石膏和波特兰水泥以形成一结实的整体结构,但能提供一质

地粗糙的表面用于与EIF系统其它层的连接,如用粘合剂连接到聚乙烯绝缘层。优

选纺织纤维织物的机织、针织或针刺外表面也使建筑工人更容易操作,不象碎玻璃

纤维毡具有个别暴露的尖锐纤维会使建筑工人受到伤害或刺激。选择本发明的针刺,

机织或针织操作增加了无数的工程和设计选择余地,能够将不同的经线和纬线长丝

走向和长丝成分组合以产生独特的面层效果。本发明的一个令人满意的特性在于它

能够防止泥浆的渗透,因此避免了连续墙板生产设备的滚筒的污染。尽管已经图解

说明了多个实施例,但这只是描述的需要,而不是限制本发明。任何对于熟知本领

域的技术人员的明显的各种改变,均涵盖在本发明所附的权利要求的范围之内。